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We present a method that is useful m the estimate and assessment of heat 
capacity data. The approach is based on an amdysis of the logarithmic average 
of the phonon frequencies. In this quantity, that may be easily derived from 
experimental data on the vibrational entropy, the influence of atomic masses 
can be exactly accounted for even in polyatomic solids. Our method is applied 
to Li20, Na,O, K:O. Rb20, and Cs,O. In particular, literature data for K:O 
are critically examined. 
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I. I N T R O D U C T I O N  

t h e r e  are several collect ions of t he rmodynamic  da ta  giving heat  capaci t ies  
('p of solids as a function of temperature ,  e.g., the J A N A F  tables [1] and 
tables by Barin [-2]. To some extent  they are based on a crit ical assessment  
of direct exper imenta l  results, but when such informat ion  is lacking the 
authors  have often resorted to estimates.  One  example  of the p rocedure  
['or such est imates  is as follows. At in termedia te  and high t empera tu res  7", 
( 'p is domina ted  by the harmonic  v ibra t ional  part ,  amoun t ing  to 3 k ,  per 
atom, where kB is Bol tzmann 's  constant .  In a real solid, Cp increases above  
3kt~ per a tom at high T because of anha rmon ic  effects. This a n h a r m o n i c  
cont r ibu t ion  to Cp is then somet imes  es t imated from the measured  value 
for ano the r  s imilar  solid. Fo r  instance, the Cp of K_,O has been modeled  
in this way by compar i son  with the Cp of N a , O  r l ] .  In this paper  we 
~uggest an a l ternat ive  method  that  has a higher reliabili ty.  
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2. THE 0s(T) M E T H O D  

Let S(T) be the entropy of a solid, calculated from Cp(T) as 

T Cp(T') dT'  
S(TI = J,, T (ll 

Further, let SD( T/Os} be the entropy in a Debye model for the lattice vibra- 
tions, with a Debye temperature Os. For each temperature 7", we get an 
experimentally determined "entropy Debye temperature" Os(T) from the 
equation 

S(T) = St)(T/Os) (2) 

The solution to Eq. (2) may be readily obtained by interpolation in Debye 
function tables in Ref. 3 or from the following rapidly converging series 
expansion for Os(T): 

[ 1 8 3 1 s  1 £+4-6 +8--~ 's ] Os(T)= T + 1 7 i ~  e,7 + ... (3) 

It gives Os to better than 0.1% when T >  0.450s. Here e is related to the 
vibrational entropy S(T) of 1 mol of a compound having n atoms per 
formula unit as 

1 exp ~'FS(T)] _ ~} 
~.= (L~-~-J (4) 

The properties of Os(T) have been illustrated in several previous 
papers from our group [4-9] .  Here it suffices to note the following. For 
harmonic lattice vibrations and at high temperatures (often T>Os/3  
suffices), the quantity Os measures the logarithmically averaged phonon 
frequency (/)log o v e r  the full frequency spectrum, through 

O s = (h/kH) exp( ½) ohog (5) 

The interatomic forces and the atomic masses normally mix in a compli- 
cated way in the individual phonon frequencies oJ. However, the atomic 
masses enter only through a multiplicative factor in CO~og [4].  Thus we can 
write 

Os= (h/kBl(ks/M~tr) I '- (6) 

M~tr is the logarithmic average of all the atomic masses in the solid, and ks  
is a quantity with the dimension of a force constant that is a complicated 
average over all the interatomic forces. 
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In a plot of Os(T) versus T, there is usually a variation with T at low 
temperatures, because the true phonon spectrum is not of the Debye form. 
For strictly harmonic vibrations, Os(T) would tend to a constant at high 
temperatures, given by Eq. (5). For real solids, Os(T) usually decreases in 
a regular manner with T, because of anharmonic softening of the phonon 
rrequencies. In the approximate temperature range Os/2-30s/2, the tem- 
perature is high enough to make the temperature dependence of Os caused 
by the form of the phonon spectrum small. The temperature is also low 
unough for anharmonic effects to be rather small. The result is that Os(T) 
varies only little with T from T~Os/2 to T~ 30s/2. Hence we may use 
experimental entropy data at T~Os and Eqs. (2} and (6) to derive an 
average effective force constant ks that well describes the "harmonic" 
phonon spectrum of the solid. 

We have previously noted some striking regularities in Os(T) and ks 
that will form the basis for the Os method used here. Within a group of 
chemically similar solids, ks shows a very regular variation, which is even 
more pronounced if we consider a quantity Es with the dimension of 
0nergy, 

Es = k sf22'-~ (7) 

Q is the average volume per atom in the compound. As an example [9] ,  
in 20 ionic compounds of the type AB2, with A = Be, Mg, Ca, Sr, and Ba 
and B =  Li, K, Rb, and Cs, Es (with Os evaluated at T20s) is constant to 
within +_9% (rms deviation). If (2 is now known, and since also Men- is 
trivially obtained, Eqs. (6} and (7) imply that we can account for Os of all 
the 20 compounds in this example to within +_4% (rms deviation). 

The temperature dependence of Os(T) at high T also shows a very 
regular behavior for chemically similar systems [5-8] .  According to low- 
order perturbation theory of anharmonic lattice vibrations, Os(T) decreases 
linearly with T at high T. As the melting temperature Tm is approached, a 
more or less pronounced additional decrease in Os(T) sets in, which often 
gives a significant deviation from the linear temperature dependence of 0s 
above 3 Tin~2. 

3. APPLICATION TO ALKALI OXIDES 

The thermal properties of the alkali oxides are of particular interest 
because these solids exhibit fast ion conduction and other unusual proper- 
ties at high temperatures. Figure ! shows Os(T) derived as described above, 
from entropy data given in the JANAF tables [1]  and the table by Barin 
[-2]. For K_,O, the JANAF and Barin tables give Debye temperatures Os 
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Fig. 1. The entropy Debye temperature 0s(T) for a l k a l i  

oxides, based on reported experimental data. The asterisk and 

the dotted curve for K_,O represent an estimate using the 
methods presented in this paper. 

at room temperature that differ by about 8%, and the temperature 
dependence of their 0s is significantly different. Os(T) derived from a 
Russian table [10]  of entropy data is also shown in Fig. I. We now use the 
method presented in this paper to discuss critically the thermodynamic 
properties of K ,O,  as they are reflected in 0 s. We deal first with the 
magnitude of 0s at room temperature, then with the temperature 
dependence of 0 s and, finally, trace one reason for the difference between 
the Os(T) curves of K , O  in Fig. 1. 

At room temperature T~O s for K 2 0  and Es can be derived as 
described above. The atomic volume g2 is calculated from crystallographic 
data [11].  We get for Es of K 2 0  (in 10 's J) 5.73 (Barin's data), 7.17 
(JANAF's data), and 6.74 (Russian data [10]) .  Li_,O, Na20 ,  K_,O, and 
Rb20  all have the CaF2-type crystal structure. From the regularities noted 
for many other systems of the same crystal structure, we expect them to 
have similar Es. values, within say _+ 10%. The corresponding Es of Li20,  
Na20 ,  and Rb20,  evaluated from 0s. at T~O.s., are 6.10 (Li20) ,  6.50 
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[Na20),  and 5.52 (Rb20),  giving an average E s =  6.04 for these three com- 
pounds. In comparison with this value, Es values of K 2 0  from the JANAF 
and Russian tables appear to be too high, which suggests that these sources 
underestimate the entropy at room temperature. If one adopts the average 
Es = 6.04 value for K20 ,  one obtains the 0.s. value marked with an asterisk 
in Fig. 1. We finally note that CsO2, with the CdClz-type crystal structure, 
has Es = 4.93. 

We next turn to the temperature dependence of Os(T}. It is 
qualitatively similar for Li,O, Na20 ,  Rb20,  and Cs20,  with Os(T} being 
curved downward, as found for other solids [5-8] .  The temperature 
dependence of Os for Li20 is similar to that observed in Raman scatter- 
ing data on the softening of phonons [12]; see Fig. 1, where the Raman 
data have been normalized so as to coincide with 0s at room tem- 
perature. Many compounds of the CaF2-type crystal structure show some 
kind of phase transition at high temperatures. A latent heat associated 
with such a transformtion will show up as a step in the 0s-versus-T 
curve, as in Fig. 1 for N a , O  and Rb20. It is important to stress that the 
tower 0s after such a step (Fig. 1) may reflect an entropy contribution 
that is associated with some lattice disorder. Then an interpretation of 0s 
directly in terms of phonon frequencies is incorrect at temperatures above 
the steps. 

The general agreement in the temperature dependence of O s.(T) for 
Li_,O, Na20 ,  Rb20,  and Cs20, and the agreement with Raman data for 
Li_,O, makes us confident that also Os(T) of K 2 0  should show the same 
behavior. Molybdenum and tungsten have been shown to have almost- 
identical temperature dependences of Os(T) when the normalized quantity 
O.s.(T)/Os(T') is plotted versus TIT,, and T'~Os [-13]. Also, for a large 
number of nontransition metals, the decrease of Os(TJ/Os(T') from T' to 
T m is approximately the same within groups of elements in the same 
column in the Periodic Table [5]. One can also argue for such a behavior 
in terms of dimensional analysis, when the potentials describing the inter- 
atomic foces in a class of solids all have the same shape but vary in 
strength and in a length parameter that scales with lattice parameter 
I Grimvall, unpublishedl. The decrease in Os(T)/Os(T') from T' to Tm for 
Li20 and N a , O  is 24 (_+3}% if we neglect the steps and assume a smooth 
extrapolation in Os(T). Assuming the same temperature dependence in 
#s.(T) for K20 ,  and inserting one step of the same magnitude as the two 
steps in the Russian data, we arrive at the dotted curve in Fig. I. It is 
very similar to that from the Russian data, except for the almost-constant 
displacement in the magnitude of 0 s. Such a displacement results if the 
Russian table somewhat underestimates S (300 K). We suggest that our 
dotted curve well represents the entropy of K_,O. 
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The data reported by Barin for K20 agree to a large extent with the 
expected Os(T), although one would also expect a downward step in 0 s 
corresponding to a disorder transition. It remains to understand why the 
JANAF values are so different, in spite of the fact that they are said to be 
modeled by comparison with experimental data for Na20. One then notes 
that the JANAF tables of 1985 report data for K ,O  that were assessed 
already in 1963. The experimental data for Na_,O then available, and used 
in the estimate for K20, are considerably different from those reported for 
Na20 in the 1985 edition. 

The variation in Os(T) with T for Cs_,O is smaller than for the other 
alkali oxides. This is not likely to be explained solely by the fact that Cs20 
has a different crystal structure. We therefore suggest that Barin's heat 
capacity increases too slowly with T for high T. 

4. DISCUSSION 

The method described in this paper is now compared with some other 
semiempirical methods to estimate Debye temperatures and vibrational 
entropies. We first give some advantages in using the entropy Debye tem- 
perature Os(T) and the quantity Es. They are both uniquely related to the 
vibrational entropy of solids. The most important feature of Es, derived 
with a Os as in Eq. (5), is that it depends only on the chemical bonding in 
the solid. Therefore regularities in Es can be directly related to similarities 
in the electronic structure in a class of chemically related compounds. Es 
has no dependence on the atomic masses, unlike 0 s itself or thermo- 
dynamic quantities such as the heat capacity. Representing the anharmonic 
effects through the temperature dependence of Os(T) also has several 
advantages. For instance, compare a direct study of the heat capacity 
Co(T) with a study of Os(T) derived from the same Cp(T). Cp(T) increases 
with T at low temperatures due to quantum statistical effects and at high 
temperatures due to anharmonicity. At temperatures of the order of, and 
somewhat above, the Debye temperature, the two effects combine to give 
an inflexion point in a Cp(T)-versus-Tcurve. This fact makes a separation 
and extrapolation of the anharmonic effect difficult [8], in particular when 
Co(T) of one solid is modeled by comparison with another solid with 
known Co(T). In contrast, Os(T) shows a smoother behavior, and in a 
strict Debye spectrum for the phonons there would be no temperature 
dependence in Os(T) caused by quantum statistical effects. (The expected 
smoothness in the variation in Os(T) was used in a critical discussion of Cp 
of Ca [6].) Further, 0 s at high T is tantamount to the logarithmic average 
of the phonon frequencies. Therefore, the temperature dependence of Os(T) 
can be compared with the temperature dependence of some phonon modes 
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measured in other ways, e.g., through the Debye-Waller factor, inelastic 
neutron scattering, or (as done above for Li20)  Raman scattering. 

After the reason for the anomalous behavior of Os(T) in K 2 0  based 
on the JANAF data was clarified above, Os(T) values of all the alkali 
oxides in Fig. 1 show a mutually consistent behavior that also has the 
qualitative temperature dependence found for other classes of chemically 
similar compounds [5-8]  (if the steps in Os due to premelting disorder 
phenomena are disregarded). This mutual agreement lends credibility to 
the experimental data we have used to derive Os(T). It also suggests that 
we could have obtained a good estimate of Os(T) for K 2 0  even if 
experimental thermodynamic data on K 2 0  had been entirely lacking. 

We next turn to other estimation methods. The most common empiri- 
cal procedure to estimate Debye temperatures 0 is the Lindemann relation 
among 0, the melting temperature Tm, a lattice parameter a, and an atomic 
mass M, viz., 

Ma2OZ/Tm = C 

where C is a constant that is supposed to be the same within a group of 
related solids. This relation is often well obeyed for the elements. In com- 
pounds with large atomic mass differences (such as those considered in this 
paper), there is no theoretically and empirically well defined way to form 
an average mass M to be used in the Lindemann relation. Further, the 
alkali oxides show premelting effects that make the use of Tm to deduce 
room temperature properties dubious. 

Voronin [14] has proposed a semiempirical method to estimate the 
vibrational contribution to standard entropies o $298. He has given results 
for 14 alkali oxides, sulphides, selenides and tellurides, including Li20,  
Na20,  K20 ,  and Rb20. His equation for the Debye temperature 0 has 
two free parameters to fit and, also, has a mass dependence given by the 
arithmetically averaged atomic mass in a compound. The parameters relate 
to a particular form of an interatomic potential. When Voronin's standard 
entropies S°8 are converted to Os, one gets 826 K (Li20),  457 K (Na20) ,  
333 K (K20) ,  and 266 K (Rb20).  These values are higher than the experi- 
mental values in Fig. 1 by 3% (Li20),  5% (Na,_O), 10% (K,O,  the 
"'star"), and 24% (Rb20).  We note that the discrepancy increases with the 
mass ratio in a compound. It might be explained by the fact that Voronin 
uses the molecular weight (the average atomic mass) as a parameter, while 
theory shows that the entropy at high T depends on the logarithmically 
averaged atomic mass. 

Latimer's rule [15, 16] offers another method to estimate standard 
entropies S°9s. It correctly introduces the logarithmically averaged mass 
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[-17, 18]. It also contains purely empirical constants. If they are fitted to 
experimental data of a restricted class of compounds ,  as was done in this 
paper, one may predict an unknown o S_,gs (e.g., for K 2 0 )  with about  the 
same accuracy as we would achieve. However,  the empirical parameters in 
Latimer's rule are not explicitly related to fundamental  physical quantities 
of the compound.  

The "zero-entropy-of-formation" method [18]  assumes that the 
entropy of a compound  is a weighted average of the entropy of the con- 
stituent pure elements in solid form. Then the correct logarithmic mass 
dependence is obtained but the prediction is uncertain since it does not 
include any information on the type of bonding in the compound.  

In conclusion, we have demonstrated the application of a semiempiri- 
cal method that relies on a single parameter  (Os or E s )  to represent a 
complex phenomenon (the total contr ibut ion to the thermodynamic  func- 
tions from all vibrational modesl.  This gives an inherent limitation to the 
accuracy of the predictions that we share with other one-parameter  
approximations.  However,  the quantities we work with are physically well 
motivated and defined, and the approximat ions  involved in the one- 
parameter  representation may in principle be traced exactly to the 
fundamental  physics of the system. Therefore our  method offers a suitable 
framework for the estimation and critical assessment of data  related to the 
vibrational properties of compounds.  
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